大利月小利月什么意思| 牛肉和什么包饺子好吃| 什么是cin病变| 副处长是什么级别| 阴茎冰凉是什么原因| 什么狗最贵| 芥子是什么| 阿胶是什么做的| 劲仔小鱼是什么鱼做的| 甲功不正常会得什么病| 皮肤过敏有什么妙招| 痔疮什么样| 安是什么意思| 常州冬至吃什么| 肩胛骨缝疼挂什么科| 幼儿园学什么| 抓阄什么意思| 夏天用什么护肤品比较好| 拉肚子拉稀水吃什么药| 玉竹长什么样子| 胆固醇高吃什么可以降下来| 万艾可是什么药| 淤青用什么药| 电视黑屏是什么原因| 舌苔厚黄吃什么药最好| 乙肝病毒核心抗体阳性是什么意思| 土崩瓦解是什么意思| 新生儿感冒是什么症状| 榴莲为什么苦| 智齿什么样子| 帕金森吃什么药效果好| 戒断反应什么意思| 椰子不能和什么一起吃| 梦见很多人是什么意思| 坐骨神经痛吃什么药| 手指甲有竖纹是什么原因| 做亲子鉴定需要什么东西| 一个月小猫吃什么| 什么叫椎间盘膨出| 头发少是什么原因| 周公吐哺天下归心是什么意思| 鼻梁痛什么原因引起的| showroom是什么意思| 凯子和马子是什么意思| 偏头痛吃什么药效果好| noxa20是什么药| 面色潮红是什么原因| 瑜伽是什么| 烧烤用什么油| 黄色配什么颜色最搭| 今天冬至吃什么| 十月初八是什么星座| 查电话号码打什么电话| 南辕北辙是什么意思| 卷柏属于什么植物| 乌龟爬进家暗示什么| 伤口换药挂什么科啊| 老年人喝什么牛奶好| 阴囊潮湿吃什么药| 马镫什么时候发明的| 入坑是什么意思| 气血虚吃什么补最快女人| 小肠换气什么症状| 没什么大不了| 一路走好是什么意思| 什么叫姑息治疗| 晚上吃芒果有什么好处和坏处| 福兮祸兮是什么意思| 冲锋陷阵是什么生肖| 隔应是什么意思| 何曾是什么意思| 敲定是什么意思| 代茶饮是什么意思| clinic是什么意思| 草字头内念什么| 开什么店好赚钱| 女人依赖男人说明什么| 脚背麻木是什么原因| 手指甲出现竖纹是什么原因| nb是什么品牌| 什么行业最赚钱投资小| 慢性扁桃体炎吃什么药| 什么是半月板损伤| 社保是什么| 尿白细胞阳性什么意思| 生物制剂是什么药| 什么是原则性问题| 台湾是什么民族| 着凉了吃什么药| 牛皮革是什么意思| 大便不正常是什么原因造成的| 内膜薄吃什么增长最快| 湿疹是什么原因| 蜂蜜的主要成分是什么| 再接再厉什么意思| 口臭严重吃什么药好得快| 家财万贯是什么生肖| 山楂可以和什么一起泡水喝| 雷贝拉唑钠肠溶片什么时候吃| 早孕有什么反应| 骨加客念什么| 飞蚊症是什么原因引起的| 拔罐为什么会起水泡| 9个月宝宝玩什么玩具| 什么网名好听| 老婆饼为什么叫老婆饼| 右肺上叶肺大泡是什么意思| 爬虫什么意思| 空调病是什么症状| 1月13日是什么星座| 什么情况需要打破伤风| 三个大是什么字| 粉蒸肉的粉是什么粉| 俊俏什么意思| 饺子是什么意思| 太傅是什么官| 氯雷他定片主治什么| 婴儿为什么老吐奶| 多吃黑芝麻有什么好处| 月经血量少是什么原因| 白细胞偏高是什么意思| 梦见着火是什么意思| 属兔五行属什么| 6月初三是什么日子| 南非叶有什么功效| 熙熙攘攘是什么意思| 甘油三酯偏高有什么危害| 新疆有什么湖| 为什么会有口臭| 高血糖吃什么| 梦泪什么意思| 2022年是什么生肖年| 梦见掉头发是什么意思| 不典型鳞状细胞是什么意思| 血小板高是什么意思| 虎毒不食子什么意思| 验孕棒什么时候测最准确| 我国的国花是什么花| 眼睛充血用什么眼药水好| 甲申日是什么意思| 缘起是什么意思| 雌二醇e2是什么意思| 眼皮肿什么原因引起的| 柯基为什么要断尾巴| 拉黑粑粑是什么原因啊| 眉毛变白是什么原因| 九月七日是什么星座| 头疼去医院挂什么科| 站台是什么意思| 爱说梦话是什么原因| 粘胶是什么材质| 休克是什么| 来月经腰酸腰痛什么原因造成的| 甜茶为什么叫甜茶| 知趣是什么意思| 饿死是什么感觉| 龙长什么样| 为什么吃芒果会过敏| 膝盖疼挂什么科室| 菊花代表什么生肖| 羊水指数是什么意思| 鼻孔流血是什么原因| 手指长倒刺是什么原因| 魁罡贵人是什么意思| 右眼一直跳是什么预兆| 推介是什么意思| 芈月和嬴政什么关系| 经期头痛吃什么药| 什么朝天| 经血粉红色是什么原因| 柳下惠姓什么| 鼻子出汗多是什么原因| 妙赞是什么意思| 医生为什么叫大夫| 天子是什么生肖| 淡水鱼什么鱼最好吃| 霉菌性阴道炎用什么药| 欺凌是什么意思| 做功是什么意思| 跑得最快的是什么生肖| 什么是纳囊| 武士是什么意思| 胃间质瘤是什么性质的瘤| 小腿抽筋吃什么药| 13层楼房有什么说法吗| 婴儿什么时候长牙| 关元穴在什么位置| 碧螺春属于什么茶| 阴虱是什么原因引起的| 什么情况下需要打破伤风| 经常吐是什么原因| 儿童腿疼挂什么科| 233是什么意思啊| 考生号是什么| 非你莫属是什么意思| UFS是什么意思| 腹水是什么症状| 生育保险有什么用| 什么汤清热解毒去火| max什么意思| 睡觉爱做梦是什么原因| 漂脱是什么意思| 糖尿病的人可以吃什么水果| 肠炎发烧吃什么药| 懵逼是什么意思| 淋巴是什么引起的| shark是什么意思| 科技布是什么材质| 天麻是什么东西| 吃什么可以缓解孕吐恶心| 姐姐家的孩子叫什么| 收缩毛孔用什么| 载歌载舞的载是什么意思| 腥臭味是什么妇科病| 容忍是什么意思| 想什么来什么是什么定律| 什么是热性水果| 带牙套是什么意思| 男人为什么会遗精| 乔木是什么意思| 榴莲和什么相克| 腰肌劳损看什么科| 65什么意思| 土耳其烤肉是用什么肉| 下嫁是什么意思| 焗是什么意思| 1999年是什么命| 十一月十七日是什么星座| 海丽汉森是什么档次| 夏至为什么吃馄饨| 秸秆是什么| 尿浑浊是什么原因| 激素六项什么时间查最好| 私联是什么意思| 南枝是什么意思| 什么是沙发发质| 月经提前吃什么药| 犹太人有什么特征| 冻顶乌龙茶属于什么茶| 息肉有什么症状出现| 无限极是干什么的| 人参果长什么样| 鸡和什么菜一起烧好吃| 因人而异是什么意思| 湖南有什么好玩的| 新疆为什么天黑的晚| 漱口杯什么材质好| 贵是什么意思| 黑魔鬼烟为什么是禁烟| 疖子是什么| 无后为大的前一句是什么| 一饿就胃疼是什么原因| 鼻基底用什么填充最好| 自然数的定义是什么| 淞字五行属什么| 双一流大学是什么意思| 三级警督是什么级别| 半联动是什么意思| 什么的小莲蓬| 胪是什么意思| 国代是什么意思| 左撇子是什么意思| 书记是什么职位| crayon什么意思| 百度

车讯:特斯拉:超级充电站将不再完全免费使用

百度 其三是关于国家监察委员会的设立。

AI agents are advanced AI systems designed to autonomously reason, plan, and execute complex tasks based on high-level goals.

What Are AI Agents?

AI agents are the new digital workforce—working for and with us. They represent the next evolution in artificial intelligence, transitioning from simple automation to autonomous systems capable of managing complex workflows. These agents not only automate repetitive and time-consuming tasks but also empower individuals and organizations to operate more efficiently by acting as intelligent personal assistants. 

Unlike traditional generative AI models that follow a basic “request-and-respond” framework, AI agents go beyond by orchestrating resources, collaborating with other agents and utilizing tools such as large language models (LLMs), retrieval augmented generation (RAG), vector databases, APIs, frameworks, and high-level programming languages like Python.

Often referred to as “agentic AI” or “LLM agents,” these systems stand out for their ability to achieve goals through iterative planning and decision-making. For example, an AI agent tasked with building a website could autonomously manage tasks like layout design, writing HTML and CSS code, connecting backend processes, generating content, and debugging—all while requiring minimal human input.

How an agentic AI pipeline works

What Are the Components of an AI Agent?

To understand how AI agents operate, it’s crucial to examine their core components. These components work in tandem to enable agents to reason, plan, and execute tasks effectively:

  • LLM: The “brain” of the AI agent, a large language model (LLM) is responsible for coordinating decision-making. It reasons through tasks, plans actions, selects appropriate tools, and manages access to necessary data to achieve objectives. The agent core is where the agent’s overall goals and objectives are defined and orchestrated.
  • Memory Modules: AI agents rely on memory to maintain context and adapt to ongoing or historical tasks:
    • Short-Term Memory: Tracks the agent’s “train of thought” and recent actions, ensuring context is preserved throughout the current workflow.
    • Long-Term Memory: Retains historical interactions and relevant information, allowing for deeper contextual understanding and improved decision-making over time.
  • Planning Modules: Planning modules enable AI agents to break down complex tasks into actionable steps:
    • Without Feedback: Uses structured techniques like “Chain of Thought” or “Tree of Thought” to decompose tasks into manageable steps.
    • With Feedback: Incorporates iterative improvement methods like ReAct, Reflexion, or human-in-the-loop feedback for refined strategies and outcomes.
  • Tools: AI agents can serve as tools themselves, but they also extend their capabilities by integrating with external systems such as:
    • APIs: Access real-time data or executing actions programmatically.
    • Databases and RAG pipelines: Retrieve relevant information and ensure accurate knowledge bases.
    • Other AI Models: Collaborate with additional models for specialized tasks.

How Do AI Agents Work?

AI agents seamlessly combine their core components to tackle complex tasks. Below is an example illustrating how these components work together in response to a specific user request.

Example Prompt: Analyze our latest quarterly sales data and provide a graph.

Components working together to respond to a request

Step-By-Step Process

Step 1. User or Machine Request 

A user, or even another agent or system, initiates the agent’s workflow by requesting an analysis of sales data and a visual representation. The agent processes this input and decomposes it into actionable steps.

 

Step 2. The LLM: Understanding the Task

The LLM acts as the brain of the AI agent. It interprets the user’s prompt to understand the task requirements, such as:

  • Retrieving data from database.
  • Performing data analysis.
  • Creating a visual graph.

The LLM determines:

  • What information it already has.
  • What additional data or tools it needs.
  • A step-by-step plan to fulfill the task.

 

Step 3. Planning Module: Task Breakdown

The planning module divides the task into specific actions:

  • Fetch: Retrieve the latest sales data from the company database.
  • Analyze: Apply appropriate algorithms to identify trends and insights.
  • Visualize: Generate a graph to present the results.

 

Step 4. Memory Module: Providing Context

The memory module ensures context is preserved for efficient task execution:

  • Short-term memory: Tracks the context of the current workflow, such as similar tasks requested last quarter, to streamline the process.
  • Long-term memory: Retains historical knowledge, like the database location or preferred analysis methods, enabling deeper contextual understanding.

 

Step 5. Tool Integration: Performing the Task

The agent core orchestrates external tools to complete each step: 

  • APIs: Retrieve raw sales data.
  • Machine learning algorithms: Analyze data for trends and patterns.
  • Code interpreter: Generates the graph based on the analysis results.

 

Step 6. Reasoning and Reflection: Improving Outcomes

Throughout the process, the agent applies reasoning to refine its workflow and enhance accuracy. This includes:

  • Evaluating the effectiveness of each action.
  • Ensuring efficient use of tools and resources.
  • Learning from user feedback to enhance future tasks.

For example, if the generated graph needs refinement, the agent adapts its approach to deliver better results in subsequent workflows.

Why Reasoning Matters

The reasoning layer is a defining feature of agentic AI, enabling agents to think about how they achieve their goals. By combining LLM capabilities with tools like APIs, orchestration software, and contextual memory,  reasoning empowers agents to navigate complex environments with precision and efficacy. This adaptability makes AI agents invaluable for automating and optimizing intricate workflows.

What Are Different Kinds of AI Agent Frameworks?

AI agents can be written directly in Python, especially for simple workflows and experimentation. When moving to more complex workflows or production environments, telemetry, logging, and evaluation become important, and agent frameworks become helpful. AI agent frameworks are specialized development platforms or libraries designed to simplify the process of building, deploying, and managing AI agents. These frameworks abstract much of the underlying complexity of creating agentic systems, allowing developers to focus on specific applications and agent behaviors rather than the technical details of implementation.

When choosing an AI agent framework, it’s important to consider factors such as:

  • Multi-agent collaboration: Does the project require multiple agents working together?
  • Project complexity: Is the framework suitable for simple tasks or complex workflows?
  • Data handling: Does the framework support necessary data integration and retrieval?
  • Customization needs: How much flexibility is needed for tailoring the agent’s behavior?
  • LLM emphasis: Does the framework prioritize working with large language models?

Depending on these requirements, a range of frameworks exists to suit different use cases and levels of complexity.

There are many ways to implement AI agents—for example, bring your own Python, LangChain, and Llama Stack.

What Are the Types of AI Agents?

AI agents can be classified based on their complexity, decision-making processes, and adaptability to their environment. Below are the key types of AI agents, ranging from simple systems to highly intelligent and adaptive frameworks:

Type of Agent Key Characteristics Use Case Example
Simple Reflex Acts based on current perceptions and predefined rules
No memory or adaptability
Thermostat adjusting temperature based on sensor input
Model-Based Reflex Maintains short-term memory or a model of the environment actions guided by rules Navigation system updating routes based on traffic conditions
Goal-Based Acts based on current perceptions and predefined rules
No memory or adaptability
Delivery robot optimizing its route to a destination
Hierarchical Multi-tiered system with higher-level agents managing specialized agents Factory automation system operating with supervisors and specialized bots
Learning Learns and adapts through feedback and experience
Leverages learning components
AI recommendation system improving suggestions over time
Multi-Agent Systems (MAS) Collaborates with other agents to achieve common goals
Works in coordinated systems
Fleet of drones coordinating to deliver packages
Utility-Based Optimizes outcomes by maximizing utility or rewards for each action Dynamic pricing algorithms adjusting rates based on market conditions

What Is AI Agent Orchestration?

Orchestration Type Description Advantages Challenges Use Case Example
Centralized A single supervisor agent coordinates tasks, data flow, and decision-making Clear control
Simplified management
Consistency in decisions
Potential bottlenecks
Less adaptable to dynamic systems
Customer Relationship Management (CRM)
Decentralized Each agent operates autonomously, sharing information with others High flexibility
Adaptable to dynamic environments
Requires sophisticated communication protocols
Higher complexity
Swarm drones for real-time deliveries
Federated Multiple agent systems collaborate across organizations with shared protocols Facilitates cross-system collaboration
Leverages system strengths
Relies heavily on interoperability and shared standards Supply chain collaboration between firms
Hierarchical Higher-level agents supervise lower-level agents in a tiered structure Balances flexibility and oversight
Ideal for complex systems
Coordination across layers can be complex
Potential dependency delays
Industrial automation with layered control

AI agent orchestration refers to the process of enabling multiple agents or tools that would typically operate independently to work together toward a common goal. This coordination allows the system to manage and execute more complex tasks efficiently.

Think of orchestration as a control framework for multi-agent systems. Orchestration is foundational for achieving scalability, efficiency, and adaptability in multi-agent systems. By enabling agents to collaborate and share resources effectively, orchestration supports:

  • Dynamic problem-solving: Adapting to changing conditions or unexpected challenges.
  • Improved resource utilization: Optimizing how agents access and use tools and data.
  • Enhancing system reliability: Reducing conflicts and ensuring consistent outcomes.

This capability makes orchestration critical for industries such as logistics, autonomous systems, cybersecurity, and enterprise automation, where seamless multi-agent collaboration is a key to success.

How Are AI Agents Different From AI Assistants?

Feature AI Assistants AI Agents
Purpose Simplify tasks based on user commands Solve complex, multi-step, goal-driven tasks autonomously
Task Complexity Low to moderate Moderate to high
Interactivity Reactive Proactive
Autonomy Low:
Relies on human guidance
High:
Independent
Based on planning and reasoning
Learning Ability Low:
Minimal, if any
High:
Learns from interactions and adapts over time
Integration High:
But limited to specific applications
Extensive:
Includes APIs, databases, and tools

AI agents and AI assistants differ significantly in their capabilities, autonomy, and the complexity of tasks they can handle.

AI assistants are an evolution of traditional AI chatbots. They use natural language processing (NLP) to understand user queries in the form of text or voice and perform tasks based on direct human instruction. These systems, such as Apple’s Siri, Amazon’s Alexa, or the Google Assistant, excel at handling predefined tasks or responding to specific commands. 

AI agents represent a more advanced form of AI that extends beyond the capabilities of assistants. They leverage planning, reasoning, and contextual memory to tackle complex, open-ended tasks autonomously. AI agents can perform iterative workflows, utilize a broad set of tools, and adapt based on feedback and prior interactions.

What Are AI Agent Use Cases?

The potential use cases of AI agents could be basically infinite. Deploying AI agents will be a matter of imagination and expertise, spanning from simpler use cases like generating and distributing content to complex use cases like orchestrating enterprise software and database functionality.

Task execution

A task execution agent, which could also be called an “API agent” or an “execution agent,” can carry out a task requested by a user by using a set of predefined executive functions.

Example: “Write me a social media post to market our latest product and be sure to mention it’s on sale and now comes in green.”

Build your first AI agent for digital content creation

Workflow optimization

AI agents for specific applications can help streamline how efficient a human is at using that tool. For example, AI co-pilots can help a user understand all the features of an application and automate how those features are used or suggest how a person can best use that tool.

Example: Optimize data center performance with a swarm of agents and an OODA loop strategy.

Data analysis

Data analysis can be performed by multi-agent systems designed to extract data and make sense of it. Think of it as an “extract and execute” strategy where one set of agents works to gather the data from short- or long-term memory, or even PDF, and then another set of execution agents that call on APIs to trigger the data analysis tools.

Example: “In how many quarters of this year did the company have a positive cash flow?”

Customer service

AI agents can provide 24-hour support while understanding natural language queries in both text and voice forms, resolving complex issues by taking action on behalf of the customer.

Example: A call center operator or chatbot can automate workflow tasks such as connecting to internal systems like the CRM, checking to see if a customer request qualifies for a refund, or inputting data needed to start a return.

Software development assistance

AI agents can function as coding assistants for software developers, helping to provide code suggestions, point out errors and offer one-click fixes, provide pull request summaries, and generate code. 

Example: One of the most popular AI agents in use today is the GitHub Copilot, which operates as an assistant to developers, generating and suggesting code, managing documentation, and fixing errors.

Supply chain management

A multi-agent system or “swarm” of agents can help optimize the supply chain by analyzing data in real time, monitoring and adjusting inventory levels based on demand, and even help source raw materials by keeping an eye on market fluctuations.

Example: A hierarchical agent system can have tiers of agents that look after different aspects of the supply chain, reporting up to an orchestrating agent that makes decisions based on the data.

How Can You Get Started With AI Agents?

NVIDIA offers tools and software to ease the development and deployment of agentic AI at scale.

  1. NVIDIA Blueprints provide a starting point for developers creating AI applications that use one or more AI agents. They include sample applications built with NVIDIA AI and NVIDIA Omniverse? libraries, SDKs, and microservices and provide a foundation for custom AI solutions. Each blueprint includes reference code for constructing workflows, tools, and documentation for deployment and customization and a reference architecture outlining API definitions and microservice interoperability.
  2. Developers have access to the newest AI models within the NVIDIA API catalog to build and deploy their own agentic AI applications.

Next Steps

NVIDIA Blueprints

Get started with reference workflows for agentic and generative AI use cases with NVIDIA Blueprints.

Digital Humans

Digital humans are the face of AI agents. Dive into how this technology is transforming industries, such as healthcare and gaming.

NVIDIA Developer Program

Get free access to NVIDIA NIM?, a building block for agentic AI, for application development, research, and testing plus technical learning resources.

副处长是什么级别 梦见杀鸡是什么预兆 痿证是什么病 kappa是什么牌子 鼓动是什么意思
珑字五行属什么 d是什么 宝宝有口臭是什么原因引起的 檀木手串有什么好处 肚子左边是什么器官
结肠炎是什么症状 玻色因是什么 银耳是什么 儿童语言迟缓挂什么科 市长属于什么级别
米线里的麻油是什么油 男人阳气不足有什么症状 骨质密度不均匀是什么意思 小孩睡觉出汗是什么原因 男人阴虚吃什么药好
副省长是什么级别hcv9jop4ns7r.cn 梦到小男孩是什么意思hcv9jop5ns5r.cn 玉屏风颗粒主治什么hcv9jop2ns6r.cn 嘴苦嘴臭什么原因hcv7jop9ns9r.cn 拔牙能吃什么bysq.com
男人尿道炎吃什么药最好hcv8jop7ns7r.cn 不care是什么意思hcv9jop5ns9r.cn 人生最大的遗憾是什么hanqikai.com 什么叫湿疹hcv8jop0ns6r.cn 二月是什么星座hcv8jop1ns8r.cn
科技皮是什么皮jinxinzhichuang.com 小孩老是咬手指甲是什么原因hcv8jop9ns5r.cn 气罐和火罐有什么区别hcv8jop1ns7r.cn 鸡眼是什么原因引起的hcv9jop2ns0r.cn 几成是什么意思hcv8jop5ns2r.cn
夏天出汗多是什么原因hcv9jop1ns3r.cn 天地不仁以万物为刍狗什么意思hcv9jop4ns9r.cn 肝火旺盛是什么意思hcv8jop7ns5r.cn cd8高是什么原因mmeoe.com 千金是什么生肖hcv8jop9ns9r.cn
百度